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Abstract

In this paper we report on the implementation of a heuristic for computing the closest of a set of n
given points in the plane to a complex query object, to wit a triangle, a circle, a rectangle etc. Our results
indicate that the heuristic is effective for query objects with small perimeter relative to the given point
set, and large values of n.

1 Introduction

There is a vast literature on the problem of preprocessing a set of n sites S = {p1, p2, p3, . . . , pn} to find the
site that is closest to a query point p (see Clarkson [4], for example). The problem that has been less studied
is that of preprocessing the set of sites to answer a proximity query for an object that is more complex than
a simple point, to wit, a line, a half-line, a line-segment, a rectangle, a convex polygon with a fixed number
of sides, a circle, or an ellipse. Assuming that the distance from a point to a query curve can be determined
in constant time, then a query can be answered in O(n) time, using O(n) space to store the points in a list.
The problem becomes difficult if we want sublinear query time. In this paper we address this problem.

Mitra and Chaudhuri [11] discuss this problem, for lines, partly because it can appear in pattern classification
and data clustering. Other applications include those in geographic information systems. It is easy to see
applications of this problem when the query object is considered as a path followed by some object.

One motivation for this paper, from a theoretical point of view, is to show the connection of this problem
with the very well-studied range-query problem in Computational Geometry. However, the data structures
that one would borrow from range-query problems are extremely complicated, and this brings us to the other
goal of this paper - is there a simple way of doing this that can be easily implemented in practice? Indeed
there is, and we show a simple solution that can be uniformly applied to a variety of different query objects.

The paper is organized as follows. In the next section we discuss some prior work. In the following section
we briefly introduce the partition tree data structure, and show a general connection between range queries
and closest-point queries in the section after that. In the fifth section, we outline our heuristic technique,
and we conclude in the sixth section.

2 Prior Work

One of the first papers to address this problem when the query object is a line was by Cole and Yap [5]. They
reported a solution with preprocessing time and space in O(n2) and query time in O(log n). Lee and Ching [8]
obtained the same result using geometric duality. Mitra [10] reported an algorithm with preprocessing time
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and space in O(n log n) and query time in O(n0.695). In a subsequent paper, Mitra and Chaudhuri [11]
improved the space complexity to O(n). In a paper by Mukhopadhyay [13], the simplicial partition technique
of Matousek [9] was used to improve the query time to O(n1/2+ε) for arbitrary ε > 0, with preprocessing time
and space in O(n1+ε) and O(n log n) respectively. Nandy et al [14] reported an algorithm for the k-nearest
neighbours of a query line with preprocessing time and space in O(n2) and O(n2/ log n) respectively, and
query time in O(k + log n).

When the query object is a line segment, Goswami et al [7] reported an algorithm for computing the k-nearest
points with both preprocessing time and space in O(n2) and query time in O(k + log2 n). The solution is
reduced to two triangle range queries and to two point-locations in a k-th order Voronoi diagram and involves
some complicated data structures. It is not a surprise therefore that no implementation was reported. It is
straightforward to extend the solution of that paper to the case when the query object is a half-line.

When the query object is a circle, Mitra et al [12] reported two different schemes: one of these has prepro-
cessing time and space in O(n3) and query time in O(log2 n); the other has preprocessing time and space
in O(n1+ε) and O(n log n) respectively and query time in O(n2/3+ε). No implementation was reported for
the algorithm in this paper either. The latter scheme uses a lifting transformation that, it turns out, is not
required if we make use of the partition trees of the next section. These trees reduce the complexity of a
query to O(

√
n polylog(n)), but increase the preprocessing time to a larger polynomial.

A related problem is that of continuous nearest neighbor: given some query curve, partition the curve into
intervals so that each point in a given interval has the same closest site, and report each such interval and
closest-site pair. Tao et al [15] used R-trees for the continuous nearest neighbor problem for line segments,
while De Almeida [6] used R*-trees for another implementation.

3 Partition Trees

Welzl [17] introduced a partition tree data structure to solve range query problems. His solution relied on
ideas introduced by Vapnik and Chervonenkis [16]. This solution has an intimate connection with our prob-
lem, and to bring this out, we briefly discuss the range-query problem in a slightly formal setting. A range
space is a pair (X, R), where X is a non-empty set and R is a set of subsets of X, called ranges. For example,
let X be the two-dimensional Euclidean space and R the set of open half-planes. The range query problem
is to determine the set of points of a finite subset S of X that lie in a given query range r ∈ R.

For the example range space above, if S is a set of three points in the plane then every subset of S is the
result of intersecting S with some half-plane. We say that S is shattered by (X, R). However, if S is any set
of four points in the plane then we can always find a subset B for which there is no half-plane H such that
H ∩ S = B. A range space (X, R) has finite VC dimension d, if d is the cardinality of the largest set S that
can be shattered by (X, R). If no such d exists, then (X, R) is said to have infinite VC dimension.

In an important paper, Welzl [17] showed that if a range space has a finite VC dimension then the points of
S can be organized into a partition tree (see Fig. 1) so that each range query visits few (sublinear in n = |S|)
nodes of the partition tree. For a given range r, at each node of the partition tree, we have to resolve if the
set of points (of S) at this node is contained in the range, is disjoint from it, or crosses it. In the first case
we include the points for counting or reporting; in the second case we exclude the points completely. But for
both cases the search stops at this node. In the third case, the query continues with the children of the node.

To come to our problem, consider cases in which the closest-point query object happens to be the boundary
of a range (for example, the boundary of a half-plane is a line, that of a disk is a circle) from a range space
of finite VC dimension. Once we have determined that a set of points at a node is on either side of this
boundary, then we can structure these points so that the closest-point query can be answered efficiently.
Thus Mitra and Chaudhuri [11] and Mukhopadhyay [13] organized the points into a convex hull (in fact, this
has to be done for range queries also). Mitra et al’s [12] algorithm, examining query circles, maintains the
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Figure 1: An example partition tree

nearest and furthest point Voronoi diagrams at each node.

This correspondence between range and closest point queries is helpful whenever it is beneficial to group
points on either side of the query curve. The only problem then becomes finding the closest points to the
query on either side of it, which might be a nontrivial task. This happens when, for example, the query object
is an ellipse, a rectangle, or a convex polygon with a fixed number of sides, even though these are boundaries
of ranges in range spaces of finite VC dimension. Let us elaborate on this by taking the example of the ellipse.

Here the first issue is to define how we measure the distance from a point p to the boundary of the ellipse.
We could define it in terms of a point x on the ellipse such that px is normal to the ellipse at x. This,
however, doesn’t use any of the fixed points of the ellipse like its center or foci. Instead, we can define the
distance as the difference |2a− dist(p, f1)− dist(p, f2)|, where 2a is the length of the major axis of the query
ellipse, while dist(p, f1) and dist(p, f2) are the distances from p to the foci f1 and f2 of the query ellipse.
This essentially reduces our problem to answering the following question for a query segment: find a point of
S outside (respectively inside) the ellipse such that the sum of its distances from the end-points of the query
segment is a minimum (maximum). No matter how the distance is defined, identifying a set of points that
lies entirely inside or entirely outside the ellipse, does not help us in choosing a point from this set that is
closest to the boundary in an obvious manner.

4 General tree-based queries

Welzl’s partition trees can not be used when the query object is not the boundary of a range from a range
space of finite VC dimension. Consider for example a line segment or a half-line. These have to be dealt
with in a manner as shown, for example, by Goswami et al [7]. Depending on the type of query objects, it
could be beneficial to use other tree structures, such as Matousek’s [9] simplicial partition trees, that put
some bound on the number of nodes visited.

Consider a range query algorithm, based on any partition tree, of the form in Figure 2. Algorithm RangeQuery
will determine the intersection of range with the points associated with some node of a partition tree. Then,
after possibly adding some information to each node of the tree, this algorithm can be modified to a closest-
point query algorithm. See Figure 3. The queries for Algorithm ClosestPointQuery are the boundaries of
the ranges in Algorithm RangeQuery. The extra information at each node would be required for steps 2(1)1
and 2(2)1. Also, the algorithm might need two different techniques for steps 2(1)1 and 2(2)1.
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Algorithm RangeQuery(node, range)

1. If node is a leaf, then use brute force to return answer

2. For each child of node

1. If child’s points are outside range, then disregard child

2. Else if child’s points are inside range, then add child’s points to answer

3. Else add RangeQuery(child, range) to answer

3. Return answer

Figure 2: A general tree-based range query algorithm

Algorithm ClosestPointQuery(node, curve)

• curve divides the plane R2 into range and R2 − range− curve

1. If node is a leaf, then use brute force to return answer

2. For each child of node

1. If child’s points are outside range, then

1. Find the point p of child that is closest to curve

2. If p is closer to curve than answer is, then update answer

2. Else if child’s points are inside range, then

1. Find the point p of child that is closest to curve

2. If p is closer to curve than answer is, then update answer

3. Else

1. p = ClosestPointQuery(child, curve)
2. If p is closer to curve than answer is, then update answer

3. Return answer

Figure 3: A general tree-based closest point query algorithm

5 A heuristic approach

The above data structures proposed for range queries are interesting in principle but are also complicated.
The construction of the partition trees relies on a range of techniques, and each node of the tree could require
three or more other data structures on the points the node contains. To the best of our knowledge, we are not
aware of any implementations of these data structures. CGAL’s [2] (Computational Geometry Algorithms
Library) range query data structure, for example, is a delaunay triangulation that uses a depth-first search
to answer queries.

Here we propose a practical heuristic for answering closest point queries, for curves in the plane, that is
extremely amenable to easy implementation and that works uniformly for many kinds of query objects. This
method also works for the continuous nearest neighbor problem. We construct a Voronoi diagram of the
input point set and restrict this diagram to a large (implicit) bounding box that encloses all the points and
all potential query objects. In addition, we require a point-location structure on this diagram. Given a query
curve, we pick any point on the curve and locate the Voronoi cell containing this point. Now we traverse
the diagram along the query curve. We can easily prove that the a query object will cross the Voronoi cell
corresponding to the site that is closest to the query object.
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One of the main advantages of this approach is that the Voronoi diagram is a very common data structure,
and implementations already exist in many libraries and/or languages. A system (a GIS for example) may
even already be using a Voronoi diagram to store sites, in which case this technique requires little or no
additional initialization time and requires little additional space.

This technique allows for query curves that satisfy the following conditions:

1. It is possible to pick some initial point on the curve

2. It is possible to determine the distance from a point to the curve

3. Given some starting point p on the curve, and a (possibly unbounded) polygon containing p, it is
possible to determine the first edge (or vertex) of the polygon that the curve intersects, or to determine
that the curve does not exit the polygon

4. It is possible to determine the direction of the tangent to the curve at a point

5. It might be necessary to be able to determine the point of intersection between the curve and a polygon
edge (i.e. lines, rays, and segments)

5.1 Implementation Details

This walk-based idea was implemented using CGAL [2]. CGAL’s Voronoi diagram data structure provides
both point location and the Voronoi cells through which query objects are followed. The main computational
problem is this: a part of the query curve is in some cell in the diagram (after possibly having entered the
cell through some edge); then through which cell edge does this part of the query curve exit the cell? Four
approaches to this problem were tested.

Counter-clockwise edge traversal Starting at some (possibly arbitrary) edge of a Voronoi cell, we travel
counter-clockwise around the interior of the cell, until we hit an edge that intersects the query object. This
method works when the query curves can be broken into sections, none of which makes a right turn. The
query object might need to be broken down further, for example in the case of a spiral.

Binary search This technique only works for linear queries. We assume that the query object has en-
tered the current Voronoi cell through some initial edge. (The implementation of this method actually uses
the previous method to exit the very first cell we encounter.) This is not absolutely necessary, it is just
simpler. We perform a binary search on the edges of the cell to find the one that intersects the query ob-
ject. Assuming the query curves can be broken into lines, half-lines, and segments, this method would seem
beneficial. If a Voronoi diagram implementation does not support random access on edges of a cell (which
is the case in CGAL’s structure), then additional preprocessing and space is required to allow a binary search.

Radial triangulation traversal Every Voronoi cell is triangulated, using the cell’s site as a central vertex,
to create one triangle for each edge. The motivation for introducing triangulations is that, given triangular
cells, it is easier to determine the edge through which a query curve exits a cell. Note that this triangulation
need not be explicit. This triangulation depends only on individual Voronoi cells, and so it can be used
implicitly.

Random triangulation traversal Every Voronoi cell is randomly triangulated without adding any ver-
tices. The implementation converted Atkinson and Sack’s binary trees [3] into triangulations for this purpose.
This triangulation has fewer triangles than the previous one. On the other hand, it might be that a query
curve will end up intersecting more edges in this triangulation. Extra preprocessing time is required to add
triangulation edges to a Voronoi diagram.

Whenever we encounter an edge intersecting the query curve, we jump over the edge into the next cell, and
repeat the process of exiting the cell. For closed curve queries, we need to keep track of the starting point
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of the walk so that we stop when reaching it again. The implementation stores the first edge that the query
intersects, and also the corresponding intersection point.

It could be that the query curve passes through a vertex of the diagram. In this case, we use the tangent
of the curve (at that vertex) to determine the cell that the curve enters. If no more than 3 sites are ever
on the same circle, then each Voronoi vertex will have exactly 3 adjacent edges, and it is straightforward
to determine how the curve exits the vertex. If it is possible that Voronoi vertices can have many adjacent
edges, then we can perform a binary search on the adjacent edges to find the exit.

5.2 Experimental Details

The implementation was tested against a brute-force algorithm (looking at each site and checking for the
minimum distance). The tests involved circle, triangle, and rectangle queries. In addition to query times,
the initialization times were recorded (see Fig. 5). For comparison, the initialization times of the Voronoi
diagram are listed with those of CGAL’s range query structure. The range query structure is based on a
delaunay triangulation, and so the Voronoi diagram structure is actually constructed from the range query
structure.

There are three potential variables for each query: the number of sites, the span of the sites, and the perime-
ter of the query object with respect to the site span. The tests vary two parameters: the number of sites per
set, and the perimeter of query objects with respect to the span of site sets; the span of the sites was kept at
a constant 1000 units. If a query object has a relative perimeter of 1/2, then it’s perimeter is approximately
half the vertical (and horizontal) distance spanned by the site set.

The test system was as follows: 2 GHz AMD Athlon 64 X2 3800+ processor; 896 MB RAM; running under
Windows XP Professional x64; compiled by Visual C++ 2005 Express. Site sets and query objects were
randomly generated using a uniform distribution from the Boost library [1]. See Figure 5 for initialization
times. This test generated a new point set for a number of different set sizes. Figures 6, 10, and 14 show
how varying the number of sites affects the query time. Each of these tests kept a fixed query object, and
used the site sets generated in the previous test. Figures 7 to 9, 11 to 13, and 15 to 17 show how varying
the query perimeter affects the query time. Each of these tests used ten different site sets, and generated ten
different query objects for each set.

Figure 4: Legend for Graphs

Figure 5: Initialization Times
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Figure 6: Query Times for a 0.45 Perimeter Circle Figure 7: Query Times for Circles in 100 000 Sites

Figure 8: Query Times for Circles in 25 000 Sites Figure 9: Query Times for Circles in 5 000 Sites
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Figure 10: Query Times for a 1.7 Perimeter Triangle
Figure 11: Query Times for Triangles in 100 000

Sites

Figure 12: Query Times for Triangles in 25 000 Sites Figure 13: Query Times for Triangles in 5 000 Sites
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Figure 14: Query Times for a 1.2 Perimeter
Rectangle

Figure 15: Query Times for Rectangles in 100 000
Sites

Figure 16: Query Times for Rectangles in 25 000
Sites Figure 17: Query Times for Rectangles in 5 000 Sites
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These graphs show that the Voronoi cell walk and the binary search techniques are advantageous over brute
force when the number of sites is large. In addition, query objects with large perimeter are undesirable. Note
that in the figures with circle queries, there appear to be two separate groups of data for the non-brute-force
techniques. This is due to rounding errors that cause the algorithm to miss the initial point of intersection
and travel around the circle a second time. Circle queries do not do so well because the walk-based algorithms
rely on (the relatively expensive task of) finding intersections, while the brute force algorithm only relies on
(the relatively inexpensive task of) finding distances. Also, the initialization times for the radial triangulation
method are the same as those for the Voronoi cell walk.

6 Conclusions

In this paper we have shown that there is an intimate connection between range-queries and closest-point
queries for a variety of complex objects. We have also proposed a simple and implementable heuristic that
works uniformly for a variety of complex objects. The method works well for large site sets and query objects
with small perimeter relative to the site set. This technique can not only be used to answer closest point
queries, but also continuous nearest neighbor queries. It is also conceivable to extend this approach for curves
in three dimensions.
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