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Streaming 1-Center with Outliers in High Dimensions
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Abstract

We study the 1-center problem with outliers in high-
dimensional data streams. The problem definition is as
follows: given a sequence of n points in d dimensions
(with d arbitrarily large), enclose all but z points using
a ball of minimum radius.

1 Introduction

The 1-center problem—finding the smallest ball enclos-
ing a set of points—is a fundamental problem in com-
putational geometry having many applications in areas
like data mining, statistics, image processing, machine
learning, etc.

In this paper, we consider the 1-center problem in a
robust setting where at most z outliers can be dropped
from the input before computing the smallest ball. In
real-world applications, data is usually noisy, and this
noise can hugely affect the quality of the output, if is not
handled properly by the algorithm. In particular, for
the 1-center problem, even one outlier can dramatically
increase the size of the final solution.

We are interested in algorithms that work under the
data stream model. In this model, the input data is
given to the algorithm one at a time as a stream over
time and the algorithm has only a limited amount of
working space, so it cannot store all the input items
received so far. This practical setting is in particular
suitable for applications that involve massive data sets,
as the algorithm can have only one pass over the input,
and the whole data need not to be stored in memory.

In this paper, we focus on the high-dimensional ver-
sion of the 1-center problem with outliers. The formal
definition of the problem is as follows: given a sequence
of n points in d dimensions (where d may be arbitrarily
large), enclose all but z points using a ball of minimum
radius.

The problem without outliers (i.e., z = 0) is equiva-
lent to the well-known “minimum enclosing ball” prob-
lem, for which an offline algorithm with O(dO(d)n) time
is available [8]. In high dimensions, Bădoiu and Clark-
son [4] have given an elegant algorithm that computes
a (1 + ε)-approximation to the minimum enclosing ball
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in d2/εe passes using O(nd/ε + (1/ε)5) total time and
O(d/ε) space.

In the data stream model, a (1 + ε)-approximation
to the minimum enclosing ball can be maintained in
O(1/ε(d−1)/2) space using coresets [1, 5] (indeed, it
just suffices to keep extreme points along O(1/ε(d−1)/2)
directions). In high dimensions, a simple stream-
ing algorithm is available [15] that computes a 3/2-
approximation to the minimum enclosing ball in any
dimension using only O(d) space.

For the related k-center problem, where the objec-
tive is to partition the points into k clusters of mini-
mum maximum radius, Charikar et al. [6] gave an in-
cremental algorithm that maintains a factor 8 approxi-
mation to the k-center in any metric space using O(k)
space. In their restricted setting, each input point is
assigned to a cluster upon arrival, and once assigned,
the point cannot be removed from its cluster at a later
time (though clusters are free to merge at any time).
Having relaxed this incremental restriction, Guha [11]
and McCutchen and Khuller [13] have recently obtained
(2 + ε)-approximation streaming algorithms for the k-
center problem using O((k/ε) log(1/ε)) space.

Charikar et al. [7] were the first who studied the
k-center problem with outliers and proposed an of-
fline algorithm with constant approximation factor in
any metric space. The approximation factor of their
algorithm is 3 if all center points that the algorithm is
allowed to choose can be enumerated; and is 4, oth-
erwise. Using this algorithm as a subroutine, Mc-
Cutchen and Khuller [13] have recently obtained a
streaming algorithm that computes a constant-factor
approximation to the k-center problem with z outliers
using O(kz/ε) space. The approximation factor of their
algorithm is 3+ε or 4+ε, depending on which algorithm
has been used as the subroutine.

For the 1-center problem with z outliers, one can
use the “robust kernel” paradigm introduced in [12,
2] to obtain a streaming algorithm with O(z/εO(d))
space [3, 14]. In high dimensions, the only previous re-
sult with sub-exponential dependency on the dimension
is the (4 + ε)-approximation algorithm of McCutchen
and Khuller [13] that requires O(zd/ε) space.

In this paper, we propose a simple streaming
algorithm that maintains a 2-approximation to the 1-
center problem with z outliers using O(zd2) space.
Moreover, using a general framework, we achieve a
streaming algorithm whose approximation factor is
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√
2 times the approximation factor of any streaming

algorithm for the minimum enclosing ball problem in
high dimensions. We also propose a simpler streaming
algorithm for the special case of z = 1.

2 A Buffering Framework

The main difficulty in handling outliers in the data
stream model is that no secure information about the
points arriving in future is available to the algorithm,
and thus, we have no way to determine which point is an
outlier, and which one is not, only based on the current
information.

In particular, we cannot hope for any bounded ap-
proximation factor if we require each point to be marked
as outlier or non-outlier upon arrival. To see this, just
consider the case where there is only one outlier, and the
first two points p1 and p2 of the stream have arrived. If
the algorithm classifies both points as non-outliers, then
the approximation factor would be unbounded as one of
the points could be outlier and the other one could form
a cluster of zero radius. If the algorithm marks one of
the points, say p1 as outlier, then the adversary can give
the third point at p1 which again makes the approxima-
tion factor unbounded.

To overcome this deficiency, we postpone the decision
about the type of the input points until we get enough
information. To this end, we use a buffering framework
as shown in Figure 1. At each time, our framework
maintains an approximate ball B, and a buffer contain-
ing at most m points of the stream. Whenever a new
input point p arrives, it is first added to the buffer. If
buffer is full, a point q is extracted from the buffer and
is fed to a streaming algorithm that maintains an ap-
proximate ball B for the points not in the buffer.

Two main things to be specified in this framework are
the size of the buffer, and the strategy for extracting a
point from the buffer in line 3. In the ideal scenario,
we keep all outliers in the buffer, and extract only non-
outlier points. However, this is not possible in practice
because we cannot precisely distinguish between out-
liers and non-outliers without having all the points in
advance. Therefore, we need to relax this restriction
and allow outliers to be extracted from the buffer as

Insert(p):

1: add p to the buffer
2: if buffer is full then
3: extract a point q from the buffer
4: update approximate ball B by adding q
5: return B + buffer

Figure 1: The buffering framework.

well, provided we have a mechanism to bound the total
error incurred by the wrongly extracted outliers.

Let S be the set of all points in the input stream,
O be the set of outliers, and P = S \O be the set
of non-outliers. We denote by Ox (⊆ O) the set of
those outliers that are wrongly classified as non-outliers
(i.e., extracted from the buffer). We call the underly-
ing algorithm that maintains an approximate minimum
enclosing ball for the points out of the buffer (in line 4
of our framework) by meb, and denote its approxima-
tion factor by α. If we can show that the radius of the
minimum ball enclosing P ∪ Ox is at most β times the
radius of the minimum ball enclosing P , then we achieve
an (αβ)-approximation algorithm for our problem, since

r̃(P ∪Ox) 6 αr(P ∪Ox) 6 αβr(P ),

where r(P ) is the radius of the minimum ball enclosing
P , and r̃(·) denotes the radius of the approximate ball
computed by meb. The best upper bound we already
have for α is 3/2 [15]. In the following sections, we
provide some upper bounds on β.

3 1-Center with 1 Outlier

It is easy to observe that for m = 1 or 2, the approx-
imation ratio of our framework is unbounded (see the
argument at the beginning of the previous section). In
this section, we provide an upper bound for m > 2 when
there is only one outlier in the system. We start with a
simple lemma.

Lemma 1 Let P be a set of d + 1 equally distanced
points in Rd (d > 2). For each p ∈ P , the distance from
p to the center of the minimum ball B enclosing P \{p}
is equal to

√
d+1
d−1r(B).

Proof. This is immediate from the fact that the cir-
cumradius of a regular n-simplex of unit side length is√
n/(2n+ 2). �

Algorithm 1 Let Q be the set of points in the buffer
(including the new point). If buffer is full, extract a
point q ∈ Q so that r(Q\{q}) is maximized.

Theorem 2 Algorithm 1 yields an approximation fac-
tor of 1

2+
√

2
2

√
1 + 1

m−2 in any dimension, using a buffer
of size m (> 2).

Proof. Let S be the set of all points in the stream, and
o be the single outlier in S. If o is not extracted from the
buffer, then we are done. Otherwise, let Q be the set of
points in the buffer just before o is extracted. Consider
the minimum ball B enclosing Q\{o}. Let c and r be
the center and the radius of B respectively, and let h
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Figure 2: Handling 1 outlier.

be the distance from o to c. It is easy to verify that the
ratio h/r is maximized when the distances between all
the points in Q are the same. (In this case, any point
of Q is equally likely to be extracted from the buffer.)
Thus, we have from Lemma 1 that h 6

√
m

m−2r.

Now, consider the minimum ball B∗ enclosing S\{o}
(i.e., the optimal solution). Let c∗ and r∗ be the center
and the radius of B∗, respectively. Consider a point
q ∈ Q\{o} on the boundary of B which is furthest from
c∗. The angle ∠c∗cq cannot be acute; otherwise all the
points of Q\{o} can be enclosed by a ball smaller than
B, which is a contradiction. Therefore

‖cc∗‖ 6
√
‖qc∗‖2 − ‖qc‖2 6

√
r∗2 − r2.

Let B+ be the smallest ball enclosing both B∗ and o.
Obviously, r(B+) 6 1

2 (r∗ + h+ ‖cc∗‖). Therefore

r(S)
r(S\{o}) 6

r(B+)
r(B∗)

6
r∗ + h+

√
r∗2 − m−2

m h2

2r∗

6
1
2

+
√

2
2

√
1 +

1
m− 2

,

where the maximum is attained when r∗ = h/m ×√
2(m− 1)(m− 2). �

Combined with the 3/2-approximation algorithm of
[15], Theorem 2 immediately gives a factor-(1.81 + ε)
streaming algorithm for the 1-center problem with 1
outlier using O(d/ε2) space.

4 1-Center with z Outliers

In this section, we provide a generalized algorithm for
handling any number of outliers. Our algorithm uses the
concept of centerpoint which is defined as follows: given
an n-point set P in d dimensions, a point c ∈ Rd is called
a centerpoint of P if any halfspace containing c contains
at least dn/(d+ 1)e points of P [10]. In other words, any
halfspace (or convex set) that avoids a centerpoint can
contain at most bdn/(d+ 1)c points of P .

Lemma 3 Given a point set S with z outliers, the cen-
terpoint of any subset P ⊆ S of size (d + 1)(z + 1) lies
in the minimum ball enclosing all non-outliers.

Proof. Let c be the centerpoint of P . By the properties
of centerpoints, any ball that avoids c can contain at
most bd/(d+ 1)|P |c = d(z+ 1) points of P , while there
are at least (d+ 1)(z+ 1)− z = d(z+ 1) + 1 non-outliers
in P . It means that c is contained in any ball that
encloses non-outliers, and in particular, is contained in
the minimum enclosing ball. �

Algorithm 2 Let m = (d+ 1)(z + 1) and Q be the set
of points in the buffer. If |Q| > m, extract from Q a
point which is closest to the centerpoint of Q.

Theorem 4 Algorithm 2 yields an approximation fac-
tor of

√
2 in any dimension.

Proof. Let P be the set of non-outliers in the stream,
and let B∗ be the minimum ball enclosing P centered at
c∗. Suppose that a subset Ox of the outliers is wrongly
extracted from the buffer by the algorithm. Fix a point
q ∈ Ox, and letQ be the set ofm points in the buffer just
before q is extracted. If c is the centerpoint of Q, then
there is a non-outlier point p ∈ Q so that ∠c∗cp > π/2;
because otherwise, all non-outliers in Q should be con-
tained in an open halfspace defined by the hyperplane
H passing through c normal to

←→
cc∗ (see Figure 3). But

this is impossible by the fact that any halfspace avoiding
c can contain at most d(z + 1) points of Q, while there
are at least d(z + 1) + 1 non-outliers in Q. Therefore,
‖cc∗‖ 6

√
‖pc∗‖2 − ‖pc‖2.

Now, let r∗ be the radius of B∗, and let r = ‖qc‖. By
the algorithm’s selection, we have ‖pc‖ > r. Moreover,
by the fact that p ∈ B∗ we have ‖pc∗‖ 6 r∗. Therefore,

‖qc∗‖ 6 ‖qc‖+ ‖cc∗‖ 6 r +
√
r∗2 − r2.

Since the above inequality holds for all points q ∈ Ox,
we have

r(P ∪Ox)
r(P )

6
r +
√
r∗2 − r2
r∗

6
√

2,

q

c∗

c

B∗

r
H

p

Figure 3: Proof of Theorem 4.
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where the maximum is attained when r∗ =
√

2r. �

The total space used by Algorithm 2 is O(d2z). The
update time is dominated by the time required for com-
puting the centerpoint of a set of O(dz) points in d
dimensions. Computing the exact centerpoint is usu-
ally expensive (exponential in d). However, Clarkson
et al. [9] have proposed an elegant algorithm that com-
putes an approximate Ω(1/d2)-centerpoint (instead of
the exact 1/(d+ 1)-centerpoint) in a time fully polyno-
mial in both d and the number of input points. We can
use this approximation algorithm to obtain an improved
update time (polynomial in d and z) at the expense of
increasing the space bound slightly to O(d3z).

5 A Simple 2-Approximation Algorithm

Algorithm 2 in the previous section gives a streaming
algorithm whose approximation factor is

√
2 times that

of the underlying meb algorithm. With the current 3/2-
approximation algorithm of [15], Algorithm 2 achieves
an approximation factor of 3

√
2/2 ≈ 2.12 in any dimen-

sion. Any algorithm for the minimum enclosing ball
problem with an approximation factor better than

√
2

immediately gives a better than 2-factor approximation
for our problem. In this section, we propose a very sim-
ple streaming algorithm for the problem with a constant
approximation factor of 2.

Algorithm 3 Pick a centerpoint c of the first (d +
1)(z + 1) points of the stream S, and initialize r = 0.
For each input point p ∈ S: (i) insert p into a buffer Q;
(ii) if |Q| > z, extract from Q a point q which is closest
to c, and update r to the distance from c to q. When the
end of the input is reached, return the ball B of radius
r centered at c.

Theorem 5 Algorithm 3 is a 2-approximation stream-
ing algorithm for handling z outliers in any dimension.

Proof. By Lemma 3, c is contained in the minimum
ball enclosing non-outliers. Let qf be the last point
extracted from the buffer, and let rf be the last value
of r. If qf is a non-outlier, then cqf of length rf is
contained in the minimum ball. Otherwise, if qf is an
outlier, then there is a non-outlier q in the buffer whose
distance to c is at least rf , and cq is contained in the
minimum ball. It implies that in both cases, the radius
of the minimum ball is at least rf/2, while the radius of
the ball returned by our algorithm is rf . �

The space complexity of Algorithm 3 is O(d2z), as we
need to accumulate the first (d+ 1)(z+ 1) points of the
stream and compute its centerpoint in the initialization
step. The update time of the algorithm is the same
as that of Algorithm 2 in the initialization step, and is
O(dz) afterwards.
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