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• To  min or max a measure M on pi , pj , pk   
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Motivation 

• Open problems posed in Duffy et al. [2005], 
Mukhopadhyay et al [2006] , Daescu et al. 
[2006] 

• 2-point site Voronoi diagrams studied by 
Barequet et al [2002] for different distance 
measures 

• Applications to Graph Drawing, Video Games, 
Adhoc Networking etc.  
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Measure Maximum Minimum 

Sum O(n log n) O(n log n) 

Product O(n log n) O(n log n) 

Difference O(n log n) O(n2 log n) 

Line-Distance O(n2) O(n2) 

Triangle Area O(nh) O(n2) 

Triangle Perimeter O(nh) O(n2log n +∑i ∑jФi 
j ) 

Circumradius O(n2 log n) O(n2 log n) 

In the minimum column for the triangle perimeter measure,  Фi 
j is a 

parameter related to point pi 
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Sum and Product 
Measure: Definition 
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Sum measure S(pi, pj, pk) = |pipj| + |pipk| 

 
 
 
  
  
  
 

 
 
Product measure P(pi, pj, pk) = |pipj| × |pipk| 

 
 
 
  
  
  
 



Maximum Sum and Product 
Measure: Characterization  

 S(pi, pj, pk) and P(pi, pj, pk) is maximum when 

pj and pk Є P – pi, realize the farthest and 
second farthest distance from point pi  
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Maximum Sum and Product 
Measure : Characterization 
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Sum and Product Measure: 
Algorithm 

• Construct second- order farthest-point 
Voronoi diagram 

• Build point location structure 

• Locate  pi 
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Maximum Sum and Product 
Measure : Complexity 

• Construction of Voronoi diagram : O(n log n)  

• Point location  over n points : O(n log n) 

• Total : O(n log n)  

• Lower bound of Ω(n log n) in the algebraic 
decision tree model by reduction from the all- 
farthest pairs problem 



Minimum Sum and Product 
Measure : Characterization 

 

 S(pi, pj, pk) and P(pi, pj, pk) is minimum when 

pj and pk Є P – pi, realize the nearest and 
second nearest distance from point pi 
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Minimum Sum and Product 
Measure : Characterization 
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Minimum Sum and Product 
Measure : Algorithm 

• Construct third order nearest-point Voronoi 
diagram 

• Build point location structure 

• Locate  pi 
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Minimum Sum and Product 
Measure : Complexity 

• Construction of Voronoi diagram : O(n log n)  

• Point location over n points : O(n log n) 

• Thus we have an O(n log n) time algorithm 

• Lower bound of Ω(n log n) in the algebraic 
decision tree model by reduction from the 
closest pair problem 

 

 



Difference Measure : Definition 
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  D(pi, pj, pk) = ||pipj| - |pipk|| 
 
 
  
  
  
 



Maximum Difference 
Measure : Characterization  

 

 For an anchored point pi, D(pi, pj, pk) is 

maximum iff pj and pk are respectively the 
nearest and farthest point from pi or vice 
versa 
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Maximum Difference 
Measure : Algorithm 

• Find nearest to each pi from nearest-point 
Voronoi diagram 

 

Voronoi Diagram 

pi 
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Maximum Difference 
Measure : Algorithm 

• Find farthest point from each pi  using a farthest-point 
Voronoi diagram  and  a point location structure 
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Maximum Difference 
Measure : Complexity 

• Construction of Voronoi diagram : O(n log n)  

• Point location over n points : O(n log n) 

• Thus we have an O(n log n) time algorithm 

•  Lower bound of Ω(n log n) in ADT model  by 
reduction from the diameter problem 
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Minimum Difference 
Measure : Characterization 

• Relative to pi, problem reduces to finding a 
closest pair on a line 

 

pi 

pi 

Closest pair 
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Minimum Difference 
Measure : Complexity 

• Closest pair problem for each pi : O(n log n)  

• Over n points : O(n2 log n)  

• Lower bound of Ω(n log n) in the ADT model 
by reduction from the closest pair problem  

•  O(n2 ) time when the points lie on a line 
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Line Distance Measure : 
Definition 

   
 
            LD(pi, pj, pk) = d(pi, pjpk) 

 
d(p, l)  is the distance of point p from line l 

 
 
 
  
  
  
 



09, March 2012 
All-maximum and all-minimum problems 

under some measures 
24 

pi 

Line Distance Measure: 
Definition 
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Line Distance Measure: 
Definition 
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Angular sequence of points around point P 

Courtesy: 
Mount’s Note 
http://www.cs.umd.edu/~mount/754/Lec
ts/754lects.pdf 
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Maximum Line Distance 
Measure: Algorithm  

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf
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Maximum Line Distance 
Measure : Complexity  

• Angular order about all pj : O(n2) 

• Farthest line thru’ pj for all pi  : O(n)  

• Farthest line from each pi  in P : O(n2)  

• Total time complexity : O(n2) 
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Minimum Line Distance 
Measure : Characterization  

 

 

pi 

•  Arrangement of lines from all pairs in P – {pi }   

C 
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Minimum Line Distance 
Measure: Characterization  

• Line closest to pi is a bounding line of  cell C  

 

 

 

 pi 

C 

p 

pj 
pk 

Proof : 



• Zone of  pi
*  in the dual plane 
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pi* 
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Minimum Line Distance 
Measure: Algorithm  



Point- Line duality: 

 Maps points (lines) in primal plane to lines 
(points)  in  the dual plane 

     

   

34 

Duality 

 xy plane(primal plane) 
p: (px, py) 
 l: y= lu. x – lv  

 
 

 uv plane(dual plane) 
p* : v = px.u – py 

l*: (lu, lv)   
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• Bounding lines of C are vertices of pi*’s zone 
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pi* 
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Measure: Algorithm  



Proof : 
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Contradiction ! 
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Measure: Characterization  
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Minimum Line Distance 
Measure : Complexity  

• Construction of arrangement : O(n2)  

• Closest  line to pi  from zone of pi
*: O(n) 

• Over n points : O(n2)   

• Problem is n2-hard by reduction from the 
problem of determining if 3 of n points in the 
plane are collinear 
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Triangle Area Measure: 
Definition 

A(pi, pj, pk) = Area of the ∆pipjpk 
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Definition 



09, March 2012 
All-maximum and all-minimum problems 

under some measures 
40 

pi 

Triangle Area Measure: 
Definition 

pj 

pk 



09, March 2012 
All-maximum and all-minimum problems 

under some measures 
41 

pi 

Triangle Area Measure : 
Definition 

pj 

pk 



09, March 2012 
All-maximum and all-minimum problems 

under some measures 
42 

• For a point pi, if A(pi, pj, pk) is maximum then 

pj  and pk  are points  on the convex hull  of P 

 

Maximum Area Triangle 
Measure: Characterization  
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Maximum Area Triangle 
Measure: Characterization  

Proof :  

 

pi 

pj 

pk 

p’j p’k 

Contradiction ! 
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• For a point pi, if A(pi, pj, pk) is maximum for a 

pair {pj, pk}, then pj is the farthest point from 
the supporting line of pipk and pk is the 
farthest point from the supporting line of pipj  

 

Maximum Area Triangle 
Measure: Characterization  
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Proof : 

 

pj pk 

pi 

p’j 

p’k 

Maximum Area Triangle 
Measure: Characterization  

All-maximum and all-minimum problems 
under some measures 
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• Preprocessing Step : Construct the convex hull 
of P and then its ray diagram  
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Maximum Area Triangle 
Measure: Algorithm  



• For each pi we scan the boundary of convex 
hull boundary for pj and pk 

a 

b 

c 

d 

e  

f de 

ef 

fa ab 

bc 

cd pi = pj 

= p’k 

= pk  

Maximum Area Triangle 
Measure : Algorithm  
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• Preprocessing Step : O (n log h) 

• Maximum area triangle rooted at pi : O(h) 

• Over n points : O(nh) 
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Maximum Area Triangle 
Measure: Complexity  



  For an anchored point pi and a fixed pj, if 
A(pi, pj, pk) is minimum then pk is vertically 
closest to the supporting line, l , of pi and pj  
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Measure: Characterization  



Proof : 
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Minimum Area Triangle 
Measure: Characterization  



• The vertically closest line to each intersection 
point on p*

i is part of the zone of pi
* 
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pi p*
i 

p1 
p2 

p3 

p*
1 p*

2 

p*
3 

Primal Plane Dual Plane 
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Measure : Algorithm  
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• Construction of arrangement : O(n2) 

• Minimum area triangle rooted at pi from zone 
of pi

*: O(n) 

• Over n points : O(n2) 

• This problem is n2-hard by reduction from the 
problem of determining if 3 of n points in the 
plane are collinear 
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Measure : Complexity  
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 P(pi, pj, pk) =  |pipj| + |pjpk| + |pkpi|  

 
 
 
 
  
  
  
 

Triangle Perimeter 
Measure: Definition 
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Triangle Perimeter 
Measure: Definition 
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Triangle Perimeter 
Measure: Definition 
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 For a point pi є P if the  perimeter P(pi, pj, pk) 

is maximum then the pair {pj, pk}  Є P – {pi} lie 
on the  convex hull, CH(P), of P.  
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Maximum Triangle Perimeter 
Measure: Characterization 
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Proof : 
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Maximum Triangle Perimeter 
Measure : Characterization 



• Maximum perimeter triangle rooted at pi (internal to 
CH(P)) reduces to computing the diameter of a 
convex figure bounded by circular arcs and tangents 
to pair of circles [Boyce et al 1985] 

59 

pi 
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• For all  pi ’s on CH(P) by the Monotone Matrix 
method  [Aggarwal et al. 1988] : O(h log h) 

• For points internal to CH(P) by Boyce’s method 
: O((n-h)h) 

• Thus an O(nh) algorithm 
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Maximum Triangle Perimeter 
Measure : Complexity 



 If Pi is the perimeter of any triangle ∆pipjpk, 

anchored at pi, then both pj and pk is at a  
distance less than Pi/2 from pi 
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Measure: Characterization 



Proof : 
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Minimum Triangle Perimeter 
Measure: Algorithm 

• Initialize Pi  
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• Check if there exists pj, pk inside circle such 
that perimeter of ∆(pi,pj,pk) <  Pi  
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pi 

Pi /2 

Minimum Triangle Perimeter 
Measure: Algorithm 



• YES: reset Pi  and repeat the last  2 steps 

• NO: Pick another pi   and continue 
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Minimum Triangle Perimeter 
Measure: Algorithm 



• Upper bound on the number of points inside a 
circle of radius Pi/2 is Pi/2∆i, where ∆i is the 

smallest separation of pair of adjacent 
distances 

• Determining  ∆i   for each pi : O(n log n) 

• Over all pi  : O(n2 log n +  ∑i ∑j (Pi  j/2∆i)
2) 

66 09, March 2012 
All-maximum and all-minimum problems 

under some measures 

Minimum Triangle Perimeter 
Measure : Complexity 
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Circumcircle radius 
Measure : Definition 

 R(pi, pj, pk) =  Radius of the circle that           
    circumscribes ∆pipjpk 
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Measure: Definition 
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Circumcircle radius 
Measure : Definition 



71 

pi 

pj 

pk 

p’j 

p’k 

09, March 2012 
All-maximum and all-minimum problems 

under some measures 

Circumcircle radius 
Measure: Characterization 
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Maximum Circumcircle 
radius Measure: Algorithm 

 
 
 
 
  
  
  
 

• Maximum circumcircle radius problem reduces 
to finding nearest line from pi , spanned by a 
pair points in the inverted set 
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Minimum Circumcircle 
radius Measure: Algorithm 

 
 
 
 
  
  
  
 

• Minimum circumcircle  radius problem reduces 
to finding farthest line from pi, spanned by a 
pair points in the inverted set. 



• Nearest  (farthest)  line from  pi : O(n log n) 
[Daescu et al 2006]  

• Nearest  (farthest) line from pi spanned by a 
pair of points in the inverted set: O(n log n) 

• Over all  n points: O(n2 log n) 
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Maximum Circumcircle radius 
Measure: Complexity 
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Conclusions 

• Open problems:  

– k-th closest under these different  measures (line 
distance measure already studied by Daescu et al) 

– Better algorithms for the minimum perimeter, 
circumcircle radius  and  min-difference  measures  

– Optimal algorithms for maximum area and 
distance  measures 
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