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A note on the approximation ratio for computing an approximate spanning
ellipse in the streaming model

Asish Mukhopadhyay∗ Animesh Sarker†

Abstract

An algorithm for computing an approximate elllipse in
the streaming model was proposed by Mukhopadhyay
and Greene [1]. Based on experimental results it was
conjectured in that paper that the ratio of the areas of
the approximate to the exact ellipse is bounded, lying
between 5 and 6. In this note, we construct an exam-
ple to show that the approximation ratio could become
unbounded.

1 Introduction

In [2], Zarrabi-Zadeh and Chan proposed a simple al-
gorithm for computing an approximate spanning ball
of a set of n points P = {p1, p2, p3, · · · , pn} in d-
dimensions in the streaming model of computation.
The approximation ratio of the volume of the approx-
imate spanning ball to the exact one for this algo-
rithm was shown to be 9/4, which is tight. Inspired by
this result, an algorithm in the same streaming model
was proposed by Mukhopadhyay and Greene [1] for
computing an approximate minimum spanning ellipse
(see http://cs.uwindsor.ca/~asishm for a beautiful
implementation of this algorithm by Eugene Greene).
Based on extensive experimental evidence, they conjec-
tured that the ratio of the area of the approximate el-
lipse to the area of the exact ellipse lies between 5 and
6.

In this note we have constructed an example input
sequence to show that the approximation ratio could
become unbounded.

2 Streaming algorithm for an approximate ellipse

To make the paper self-contained, we include a brief dis-
cussion of the approximation algorithm of Mukhopad-
hyay and Greene [1]. Their algorithm goes as follows.

Given the current approximate ellipse Ei and a point
pi outside it, they construct an elliptic transformation
that carries Ei into a unit circle; the same transfor-
mation is applied to pi, with an additional rotation
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that carries the transformed point onto the x-axis in
the tranformed plane. Next, using elementary algebraic
tehniques, it is shown how to construct a minimum el-
lipse that contains the unit circle and goes through the
transformed point. An inverse elliptic transformation
gives us the minimum approximate ellipse Ei+1 in the
original plane. The utility of the elliptic transforamtion
is that it preserves relative areas as well as their ratios.

In the following section we construct an example in-
put sequence to show that the approximation ratio can
be unbounded.

3 An example with unbounded approximation ratio

To construct the example we need the following impor-
tant lemma.

Lemma 1 The exact ellipse incident on (0, k), (0,−k)
and (3l, 0) must also pass through (−l, 0). Moreover, the
length of the minor axis of this exact ellipse is 4k√

3
.

(0, k)

(0,−k)
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Figure 1: Exact ellipse through (0, k), (0,−k) and (3l, 0)

Proof. Let
(x− α)2

a2
+
y2

b2
= 1 be the equation of the

exact ellipse. Since it passes through (3l, 0), we have

a = 3l−α. By substituting (0, k) we get b =
ak√

a2 − α2
.

The area of this ellipse A = πab = π (3l−α)2k√
(3l−α)2−α2

. By

setting
dA

dα
= 0, we get α = l,

3l
2
, 3l. But α = l gives

the minimum area. The center of the exact ellipse is
(l, 0), and a = 3l − α = 2l. Therefore it passes through

(−l, 0). Since α = l and a = 2l, we get b =
ak√

a2 − α2
=

2lk√
4l2 − l2

=
2k√

3
. Thus the length of the minor axis is

4k√
3

. �
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In the following lemma we construct an example for
which the ratio of the length of the minor axis of ap-
proximate ellipse to the length of the minor axis of exact
ellipse can be made unbounded. We make crucial use
of Lemma 1.

Lemma 2 There exists an input point sequence for
which the ratio of the minor axis of approximate ellipse
to that of the exact ellipse becomes unbounded.

(1, 0) (pm, 0)(0, 0)

Figure 2: m-th transformed plane Pm

Proof. Consider three points (0,−1), (0, 1) and
(−1, 0). Let E0 be the exact ellipse through these three
points. Since the approximate ellipse through these 3
points is identical with the exact one, the ratio of their
areas is 1 in this case. Now we start adding points on
the positive x-axis.

If we add a point (pm, 0) on the positive x-axis then
the exact ellipse will pass through (0,−1), (0, 1), and
(pm, 0). For any pm, the length of the minor axis of the
exact ellipse is 4√

3
(Lemma 1).

We denote the original plane by P0. The transforma-
tion S0T0 will transform E0 to the unit circle where T0

is a translation and S0 is a scaling. Let P1 = S0T0P0

be the transformed plane. We can choose a point (p′, 0)
on this transformed plane such that the minor axis of
the spanning ellipse, which passes through (p′, 0) and
encloses the unit circle, is greater than 1. Suppose ST
is the transformation which transforms this new ellipse
to the unit circle where S is a scaling and T is a trans-
lation. Let P2 = STP1. Take (p′, 0) on P2 and find the
ellipse that passes through (p′, 0) and encloses the unit
circle.

If we repeat this process n times, then each time we
increase the minor axis of the ellipse same amount. De-
note the approximate ellipse on Pn by En. The ap-
proximate ellipse on the original plane can be found
by applying the transforamtion (T−1S−1)nT−1

0 S−1
0 En.

Since S is a shrinking along y-axis, S−1 is an expansion
along y-axis. Therefore we can expand the minor axis
of approximate ellipse as much as we want by adding a
sufficient number of points. Since the minor axis of the
exact ellipse is fixed, we conclude that the ratio of the
minor axis of approximate ellipse to that of the exact
ellipse is unbounded.

Note that the point (p′, 0) on the m-th transformed
plane corresponds to (T−1S−1)mT−1

0 S−1
0 (p′, 0) on the

original plane. �

Lemma 3 The ratio of the length of major axis of ap-
proximate ellipse to the length of major axis of exact
ellipse, constructed by the method described in Lemma
2, is greater than 3/4.

(1, 0) (pm, 0)(0, 0)

L

M

Figure 3: LM is the transformed line segment joining
(0,−1) and (0, 1) on the original plane

Proof. Suppose 2aA and 2aE denote the length of the
major axis of the approximate ellipse and the exact el-
lipse respectively. Figure 3 shows the m-th transformed
plane Pm, and the line segment LM is the transformed
line segment joining (0, 1) and (0,−1) on the original
plane. By Lemma 1 the length of the major axis is 4/3 of
the distance of (pm, 0) from LM . Since LM must be en-
closed by the unit circle, the maximum distance of point
(pm, 0) from LM is pm + 1. Hence 2aE ≤ 4

3 (pm + 1).
From Figure 3 it is clear that 2aA ≥ pm+1. This implies

that
2aA
2aE

≥ pm + 1
(4/3)(pm + 1)

≥ 3
4

. �

Theorem 4 There exists an input point sequence of
points for which the approximation ratio of the ellipse
areas becomes unbounded.

Proof. Let aA, bA, and AreaA denote the semi-major
axis, semi-minor axis and the area of the approximate
ellipse respectively in the transformed plane, while aE ,
bE , and AreaE denote the same quantities respectively
for the exact ellipse. By the method described in
Lemma 2 we can construct an input point sequence for

which
bA
bE

is unbounded. By Lemma 3 we have
aA
aE
≥ 3

4
.

Since relative areas are preserved by an elliptic transfor-

mation, the ratio
AreaA
AreaE

is identical for the ellipses in

the original plane. Now
AreaA
AreaE

=
πaAbA
πaEbE

=
aA
aE

bA
bE
≥

3
4
bA
bE

. Since by Lemma 2, there exists an input sequence

for which the ratio
bA
bE

is unbounded, we conclude that
AreaA

AreaE
is unbounded for this input sequence. �

Consider a sequence of ellipses described in Lemma
2. Suppose for E0, the lengths of the axis parallel to x-
axis and y-axis are rx and ry respectively. The scaling
factors to transform E0 to a unit circle are 1/rx and
1/ry along x-axis and along y-axis respectively. Suppose
on the transformed planes P1, P2, P3, · · · , the minimum
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ellipses E1, E2, E3, · · · that are enclosing the unit circle
and the point (pm, 0) has the minor axis 1 + s and the
major axis pm + 1 + t. On the original plane the minor
axis and the major axis of En are rx(pm + 1 + t)n and
ry(1+s)n respectively. In the following theorem we will
show that the approximation ratio does not depend on
the eccentricity.

Theorem 5 The approximation ratio does not depend
on the eccentricity of the exact ellipse.

Proof. Suppose the eccentricity of an exact ellipse e
and a positive real number M are given. We will con-
struct an example such that the approximation ratio is
greater than or equal to M .

Choose an n such that
(1 + s)n−1

pm + 1 + t
> 2M and choose

an a such that (pm + 1 + t)n−1 < a < (pm + 1 + t)n.
Then b = a

√
1− e2. Let k =

√
3b
2 .

Start with three points (0,−k), (0, k) and (−1, 0) and
construct a sequence of ellipses described in Lemma 2.
The lengths of the major axis and the minor axis of
En−1 on the original plane are aA = r′x(pm + 1 + t)n−1,
bA = r′y(1+s)n−1 respectively. The length of the major
axis and the minor axis of the exact ellipse are aE = a
and bE = 2k√

3
. Therefore,

AreaA
AreaE

=
πaAbA
πaEbE

=
aA
aE

bA
bE

=
r′x(pm + 1 + t)n−1

a

r′y(1 + s)n−1

2k√
3

=
r′x(pm + 1 + t)n

a

√
3r′y(1 + s)n−1

2k(pm + 1 + t)

= r′x
(pm + 1 + t)n

a
·
√

3
2
· r
′
y

k
· (1 + s)n−1

(pm + 1 + t)

≥ 1
2
· 1 · 1 · 1 · 2M

= M

�

In the next theorem we will show that for any given
exact ellipse we can find a sequence of points for which
the approximation ratio could be as large as we want.

Theorem 6 For any given exact ellipse there is a se-
quence of points for which the approximation ratio is
arbitrarily large.

Proof. Suppose an exact ellipse is given on a plane P−2.
Let M ∈ R. Using appropriate rotation and translation
align the major axis and the minor axis of this exact

ellipse along x-axis and y-axis respectively. Let denote
this plane by P−1 and let e be the eccentricity of the
exact ellipse.

Now determine a and b which are described in the
proof of Theorem 5. Using the appropriate scaling fac-
tor transform the exact ellipse to the ellipse with the
major axis and the minor axis being a and b respec-
tively. Denote this plane by P0. Determine a sequence
of points described in the proof of Theorem 5. By trans-
forming this sequence of points to P−2 plane we get the
desired sequence. �

We do not need a sequence of points to show that
the approximation ratio is unbounded. We can show it
by only 4 points. From [1] we know that the minimum
ellipse that encloses the unit ball and the point (d, 0)
has the equation a(x− x0)2 + cy2 = 1 where

x0 =
d2 − 1

3d− β − β−1

a =
1

(β − x0)(β−1− x0)

c =
1

1− x0β

β =
d−
√
d2 + 8
4

The area of this minimum ellipse is

Aappr = π
(d− β)(dβ − 1)2

(β2 − 2dβ + 1)3/2

.
The approximation ratio is 1 for the ellipse through

(0, 1), (0,−1), and (1, 0). After transforming this ellipse
to the unit circle we will add a new point on the x-axis
of the transformed plane. Suppose the coordinates of
this new point is (d, 0) on the transformed plane. The
minor axis of the exact ellipse on the transformed plane
is bounded and the length of the major axis is at most
2
3 (d+ 1) by Lemma 1. Therefore,

Aappr

Aexact
=

(d− β)(dβ − 1)2

k(d+ 1)(β2 − 2dβ + 1)3/2

This is a function of d. The numerator of this expres-
sion has degree 5 and the denominator has degree 4.
Therefore, we can make this ratio as large as we want
by taking the point far away.

4 Conclusions

Since the ratio of areas is not bounded, the important
unresolved question is: What is the ratio that remains
bounded ? We conjecture that there always exists some
direction in which the ratio of the widths of the ellipses
remains bounded. Thus for the example above, the ra-
tio of the major axes is bounded above by 3. That
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this is plausible is supported by the result of [2] for ap-
proximate balls. We have made some progress towards
resolving this question.
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