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Abstract

We propose a streaming algorithm to compute an approximate ellipse of a set of points. This extends
the work of Zarrabi-Zadeh and Chan who proposed a very simple algorithm to compute a 3/2-approximate
(in terms of radius) d-dimensional ball in the same model. We have been able to obtain only a very crude
approximation ratio of 9k

4

√

1−e2
(in terms of area), where e is the eccentricity of the minimum spanning

ellipse of the point set, and k is a constant defined in the text. The algorithm uses O(1) space, and O(1)
time for each point.

1 Introduction

Of late geometric computation in the streaming model has received a lot of attention from researchers in the
CG community [4, 1, 5].

In [10] Zarrabi-Zadeh and Chan proposed a simple algorithm for computing an approximate spanning ball
of a set of n points S = {s1, s2, s3, ..., sn} in the streaming model of computation. Though the algorithm is
simple, they came up with a very clever and elegant analysis to show that the approximation ratio is 3/2
(in terms of radius). Inpired by the above paper, in this note we investigate the problem of extending their
algorithm to compute an approximate ellipse in the same model.

The problem of computing a spanning ellipse of a planar set of points has been around for a very long time.
Silverman and Titterington [7] proposed an O(n6) algorithm for this problem, which was improved to O(n4)
by Post [6]. Much later, Dyer [3] proposed an O(n) time deterministic algorithm for this (indeed in O(n)
time for any fixed dimension d). Welzl [9] proposed an O(n) expected time algorithm.

In this note we show how to find an approximate minimum ellipse spanning S, with an approximation factor
of 9k

4
√

1−e2
(in terms of area), where e is the eccentricity of the minimum spanning ellipse of S, and k is a

constant defined later in the text. The algorithm uses O(1) space and O(n) time.

2 Streaming problem

At iteration i + 1 of the algorithm, we are given a point si+1, and also some previous ellipse Ei. We know
that Ei is an approximate minimum enclosing ellipse for some unknown set Si. We then want a new ellipse
Ei+1 that is an approximate minimum enclosing ellipse for Si+1 = Si

⋃{si+1}.

∗E-mail: asishm@cs.uwindsor.ca
†E-mail: greene6@uwindsor.ca
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This is a special case of the problem of computing a minimum ellipsoid that spans a given set of ellipsoids of
full volume. Therefore it can be set up as a convex programming optimization problem [2].

There is a very simple streaming algorithm for balls [10] that picks the first input point as the center, and
makes the ball just big enough to contain the farthest subsequent point. This has an approximation ratio
of 2 (in terms of radius). We can apply the same idea to ellipses by using the first two points as foci, and
making the ellipse just big enough to cover all subsequent points. If the points of S lie very close to a line
segment, then the area of the actual minimum ellipse will be very close to zero. The first two points in the
stream could both be very close to one endpoint of the line segment, and so the approximate ellipse will have
area close to that of the circle with the line segment as a radius. This note will suggest a better algorithm.

3 Minimum spanning balls

Zarrabi-Zadeh and Chan [10] give an algorithm for solving this problem for minimum enclosing balls. Each
new ball in their algorithm is the smallest that contains the new point and also the previous ball. The
algorithm produces a ball that has a radius no larger than 3/2 of the radius of the optimal ball.

We can apply the same idea to ellipses. Assume that Ei encloses all of Si. At the (i + 1)st iteration, we
approximate the minimum ellipse by the smallest ellipse Ei+1 enclosing both Ei, and si+1. Section 5 will
describe how to accomplish this.

4 Ellipses

An ellipse E with center p0 = (x0, y0) is the set of points p = (x, y) that satisfy

[p− p0]
T A [p− p0] = 1

[

x− x0 y − y0

]

[

a b
b c

] [

x− x0

y − y0

]

= 1

This corresponds to an ellipse if and only if det(A) > 0. Expanding this,

a(x− x0)
2 + 2b(x− x0)(y − y0) + c(y − y0)

2 = 1

F (p) = a(x− x0)
2 + 2b(x− x0)(y − y0) + c(y − y0)

2 − 1 = 0

The area of E will be π√
det(A)

= π√
ac−b2

. If E is aligned with the x and y axes, then b = 0.

The following symbols will be used to denote the geometry of an ellipse E (see Figure 1):

• E will have center p0 = (x0, y0);

• r1 is half the length of the axis corresponding to φ, and r2 is half the length of the other axis (r1 can
correspond to the minor or major axis);

• φ is the angle corresponding to the direction of r1.

5 Our solution

When the algorithm receives its first point, the approximate minimum ellipse is just that point. We will
only consider subsequent points that are not already in the current approximate ellipse. For the second
point, the approximation becomes a segment. As long as subsequent points are on the supporting line of this
segment, the approximate ellipse will be a segment. The next point not lying on the supporting line produces
a non-degenerate ellipse defined by the new point and the endpoints of the segment. The approximate ellipse
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(x0, y0)

r2

r1

φ

Figure 1: An ellipse

is thus equal to the exact ellipse up to this moment.

Given non-degenerate ellipse Ei and point si+1, we can derive a transformation Ti that maps Ei to the unit
circle. Now define two necessary properties:

P1 For any ellipse E, the image Ti(E) is an ellipse, and the inverse image T−1
i (E) is an ellipse;

P2 Ti preserves relativity of ellipse areas, so area(E1) ≤ area(E2)⇔ area(Ti(E1)) ≤ area(Ti(E2)).

Assuming Ti has these properties, we transform si+1 into s′i+1 = Ti(si+1), and let E′
i+1 be the smallest ellipse

that contains the unit circle and s′i+1. Then Ei+1 = T−1
i (E′

i+1) is the smallest ellipse that contains Ei and
si+1. How do we find Ti?

5.1 Defining the transformation

Lemma 1. Let T (x, y) = S

[

x
y

]

=

[

α 0
0 1

] [

x
y

]

. Then T satisfies P1 and P2.

Proof:

Let E be some ellipse

1 = [p− p0]
T

A [p− p0]

=
[

x− x0 y − y0

]

[

a b
b c

] [

x− x0

y − y0

]

For some p on E, let

p′ = T (p)

=

[

α 0
0 1

] [

x
y

]

=

[

αx
y

]

Then p = S−1p′ =

[

1
α

0
0 1

]

p′.

Let

p′0 = T (p0)

=

[

α 0
0 1

] [

x0

y0

]

=

[

αx0

y0

]
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Then p0 = S−1p′0 =

[

1
α

0
0 1

]

p′0. So

1 =
[

S−1p′ − S−1p′0
]T

A
[

S−1p′ − S−1p′0
]

= [p′ − p′0]
T

(S−1)T AS−1 [p′ − p′0]

Hence the transformed ellipse T (E) can be represented by

1 = [p′ − p′0]
T

S−1AS−1 [p′ − p′0]

Now

S−1AS−1 =

[

1
α

0
0 1

] [

a
α

b
b
α

c

]

=

[

a
α2

b
α

b
α

c

]

So det(S−1AS−1) = 1
α2 det(A). Then T (E) is an ellipse. (T−1 is also a x-scaling, so T−1(E) is also an

ellipse.) In addition, the area of a transformed ellipse is just a constant multiple of that of the original
ellipse. So T satisfies P1 and P2. 2

We can make Ti(x, y) = Sy(1/r2i)S
x(1/r1i)R(−φi)[(x, y) − (x0i, y0i)]

T , where Sx(r) and Sy(r) are scaling
matrices for scaling by r along the x and y axes respectively, and R(θ) is a rotation matrix for a counter-
clockwise rotation about the origin by θ. We know that rotation and translation satisfy P1 and P2, and
Lemma 1 shows that scaling along the x-axis satisfies P1 and P2. (Note that scaling along an arbitrary axis
can be viewed as a rotation, a scaling along the x-axis, and another rotation.) So Ti satisfies P1 and P2.

We can further simplify the problem by adding another rotation to Ti, so that s′i+1 = Ti(si+1) is on the
positive x-axis. Let s′i+1 = (d, 0). So the problem of finding the smallest ellipse Ei+1 containing an ellipse
Ei and a point si+1 is reduced to that of finding the smallest ellipse E′

i+1 containing the unit circle and a
point s′i+1 = (d, 0) on the positive x-axis. Now how do we find E′

i+1?

5.2 Finding the ellipse

Lemma 2. Let E and E be two ellipses that are the reflections of each other in the x-axis. Then the area of
the (strict) convex combination λE + (1 − λ)E (where 0 < λ < 1) is smaller than the areas of E and E.

Proof:

We have F (x, y) = a(x − x0)
2 + 2b(x − x0)(y − y0) + c(y − y0)

2 − 1 = 0 for E and, negating y and
y0, F (x, y) = a(x − x0)

2 − 2b(x − x0)(y − y0) + c(y − y0)
2 − 1 = 0 for E. The convex combination is

λF (x, y) + (1− λ)F (x, y) = a(x− x0)
2 + 2b(2λ− 1)(x− x0)(y − y0) + c(y − y0)

2 − 1 = 0 Now 0 < λ < 1, so
−1 < 2λ− 1 < 1, and hence ac− b2(2λ− 1)2 > ac− b2 = ac− (−b)2. So the area of the convex combination
is smaller than that of E (and E). 2

Lemma 3. The smallest ellipse E′
i+1 containing s′i+1 and the unit circle will have an axis on the x-axis.

Proof:

Assume E′
i+1 is not aligned with the x- and y-axes. Since the unit circle and s′i+1 are symmetric with

respect to the x-axis, there must be another ellipse E′
i+1 with the same area, that is just E′

i+1 reflected in

the x-axis. Now E′
i+1 and E′

i+1 have two points on the x-axis in common. The (strict) convex combination

λF ′
i+1(x, y) + (1− λ)F ′

i+1(x, y) = 0 of E′
i+1 and E′

i+1 has these properties:

• If (x, y) is on the boundaries of both E′
i+1 and E′

i+1, then (x, y) is on the boundary of λE′
i+1+(1−λ)E′

i+1;

• If (x, y) is in the interiors of both E′
i+1 and E′

i+1, then (x, y) is in the interior of λE′
i+1 + (1− λ)E′

i+1.
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If we set λ = 1
2 , then the convex combination will be aligned with the x-axis, it will contain the unit circle

and s′i+1, and it will have a smaller area than that of E′
i+1. 2

Now consider the circle Ci+1 that is the smallest circle containing si+1 and the unit circle. See Fig. 2.

C′

i+1(t0)

s′

i+1

Figure 2: A circle containing and tangent to the unit circle, and passing through s′i+1

We stretch Ci+1 along the x- and y-axes, always maintaining three constraints regarding the stretched circle
C′

i+1 (which is an ellipse):

1. C′
i+1 contains the unit circle;

2. C′
i+1 is tangent to the unit circle at at least one point;

3. C′
i+1 passes through s′i+1.

See Figure 3. E′
i+1 will have these properties as well. E′

i+1 will be the C′
i+1 with smallest area.

C′

i+1(t)

α s′

i+1

(cos α, sin α)

Figure 3: An ellipse containing and tangent to the unit circle, and passing through s′i+1

Now we can shrink Ci+1 along the y-axis, and keep the point of tangency at (−1, 0), up to a certain point
until we start violating the containment constraint. At this point, we can start stretching the ellipse along
the x-axis. We can parameterize C′

i+1 so that the ellipse C′
i+1(t) varies in the previous manner as t varies.

Define t0 so that Ci+1 = C′
i+1(t0). Assume that t decreases as we stretch along the y-axis, and increases as

we first shrink along the y-axis and then stretch along the x-axis.

If we start t at t0, and decrease t, the minor axis of C′
i+1(t) remains constant, but the major axis increases

in length. So t < t0 ⇒ area(C′
i+1(t)) > area(C′

i+1(t0)).

Consider another value t2, such that the center of C′
i+1(t2) is the origin. See Fig. 4. Then C′

i+1(t2) is tangent
to the unit circle at (0, 1) and (0,−1). If we increase t from this value, the major and minor axes of C′

i+1(t)
will increase in length. So t > t2 ⇒ area(C′

i+1(t)) > area(C′
i+1(t2)).

Then ∃t′ ∈ [t0, t2] such that E′
i+1 = C′

i+1(t
′). We should be able to write the area of C′

i+1(t) in terms of just
t, and then minimize that expression to find E′

i+1.

There is yet another restriction we can put on t. As we increase t from t0, there is some value t1 such that
we can no longer shrink C′

i+1(t) along the y-axis while fixing it through s′i+1 and (−1, 0). See Fig. 5. If
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s′

i+1

C′

i+1(t2)

Figure 4: C′
i+1(t) corresponding to t = t2

t ∈ [t0, t1), then area(C′
i+1(t)) > area(C′

i+1(t1)). So we can focus on t ∈ [t1, t2].

s′

i+1

C′

i+1(t1)

Figure 5: C′
i+1(t) corresponding to t = t1

The curvature of C′
i+1(t) at (r1 cos θ, r2 sin θ) is r1r2

(r2
2 cos2 θ+r1

2 sin2 θ)
3
2

[8]. So the curvature at (−1, 0) is r1

r2
2 . If

t ∈ [t0, t1], then the major axis has length d + 1. Setting this curvature to 1 to match that of the unit circle

(which happens when t = t1), we get r2 =
√

d+1
2 . The area of C′

i+1(t1) is then π
(

d+1
2

)
3
2 .

The equation of C′
i+1(t) is a(x− x0)

2 + cy2 = 1. Since s′i+1 is on it,

a(d− x0)
2 = 1 (1)

Let α be the angle made by the x-axis, the origin, and the point at which C′
i+1(t) touches the upper half of

the unit circle. (See Figure 3.) The tangent to the circle at (cos α, sin α) is

x cosα + y sinα = 1 (2)

The tangent to the ellipse at (cosα, sin α) is

a(x− x0)(cos α− x0) + cy sin α = 1

xa(cos α− x0) + yc sin α = 1 + ax0(cosα− x0) (3)

If α = π
2 , then the tangent is

y = 1

from the circle, and

−ax0x + cy = 1− ax2
0

from the ellipse. Then it must be that x0 = 0 and c = 1. This verifies that the area of C′
i+1(t2) is πd. So we

are looking for a minimum area at most min(πd, π
(

d+1
2

)
3
2 ).
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Assume from now on that α ∈ (π
2 , π). Since (2) and (3) are the same line, we know cos α

a(cos α−x0)
= 1

c
=

1
1+ax0(cos α−x0)

. So

a(cosα− x0) = cosα + ax0 cosα(cos α− x0)

a(cos α− x0 − x0 cosα(cos α− x0)) = cosα

a(cos α− x0)(1 − x0 cosα) = cosα

a =
cosα

(cosα− x0)(1− x0 cosα)

and

c =
cosα− x0

cosα

cosα

(cosα− x0)(1− x0 cosα)

=
1

1− x0 cosα

Using (1), we know that

(d− x0)
2 = (cosα− x0)(sec α− x0)

d2 − 2dx0 = 1− x0(cosα + secα)

x0(cosα + secα− 2d) = 1− d2

x0 =
d2 − 1

2d− cosα− secα

We can therefore write the area of C′
i+1(t) in terms of just β = cosα:

area(C′
i+1(t)) =

π√
ac

= π
√

f(β)

= π

√

(β − x0)(1 − x0β)2

β

= π

√

√

√

√

(

β − d2−1
2d−β−β−1

) (

1− d2−1
2d−β−β−1 β

)2

β

= π

√

(

1 +
d2 − 1

β2 − 2dβ + 1

)(

1 + (d2 − 1)
β2

β2 − 2dβ + 1

)2

= π

√

(β − d)2

β2 − 2dβ + 1

(

(dβ − 1)2

β2 − 2dβ + 1

)2

= π

√

(β − d)2(dβ − 1)4

(β2 − 2dβ + 1)3

To find the β ∈ (−1, 0) that minimizes f(β),

f ′(β) =
(2(β − d)(dβ − 1)4 + (β − d)24(dβ − 1)3d)(β2 − 2dβ + 1)3 − (β − d)2(dβ − 1)43(β2 − 2dβ + 1)2(2β − 2d)

(β2 − 2dβ + 1)6

= 2(β − d)(dβ − 1)3
((dβ − 1) + 2d(β − d))(β2 − 2dβ + 1)− 3(β − d)2(dβ − 1)

(β2 − 2dβ + 1)4
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Setting f ′(β) = 0,

0 = ((dβ − 1) + 2d(β − d))(β2 − 2dβ + 1)− 3(β − d)2(dβ − 1)

= (3dβ − 2d2 − 1)(β2 − 2dβ + 1)− 3(β2 − 2dβ + d2)(dβ − 1)

= 3dβ3 − 6d2β2 + 3dβ − (2d2 + 1)β2 + 2(2d3 + d)β − 2d2 − 1− 3dβ3 + 6d2β2 − 3d3β + 3β2 − 6dβ + 3d2

= 2(1− d2)β2 + d(d2 − 1)β + (d2 − 1)

Now d > 1, since s′i+1 is outside the unit circle, so 1− d2 6= 0.

= 2β2 − dβ − 1

β =
d±
√

d2 + 8

4

We need β < 0, so

β =
d−
√

d2 + 8

4
(4)

If the area of the ellipse corresponding to this value of β is smaller than min(πd, π
(

d+1
2

)
3
2 ), then E′

i+1 is
described by a(x− x0)

2 + cy2 = 1, where

x0 =
d2 − 1

2d− β − β−1
(5)

a =
1

(β − x0)(β−1 − x0)
(6)

c =
1

1− x0β
(7)

6 Approximation ratio

To obtain an approximation ratio, we use the result of [10]. Suppose

ApproxEllipse ≤ k ×ApproxDisk, (8)

where k is a constant.

We have not been able to establish the value of k exactly, but extensive experimentations indicate that k lies
between 5 and 6.

We know from [10] that

ApproxDisk ≤ 9/4MinDisk,

Now,

MinDisk ≤ 1√
1− e2

MinEllipse,

where e is the eccentricity of the minimum spanning ellipse of the point set.

Thus, combining the above results we obtain the following approximation ratio:

ApproxEllipse ≤ 9k

4
√

1− e2
MinEllipse, (9)

If we set k = 6, we get

ApproxEllipse ≤ 27

2
√

1− e2
MinEllipse, (10)
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Observation 1. Let E be an ellipse centered at the origin, with major axis on the x-axis (r1 and r2 being the
semi-major and semi-minor axis lengths respectively). Consider all points that are a fixed distance (greater
than r2) from the origin, and outside E. A point that maximizes the area of the smallest ellipse containing
the point and E will lie on the y-axis.

The reason for this is that scaling E to a circle will involve shrinking along the x-axis (or expanding along the
y-axis). If the point is on the y-axis, then the distance between the circle and the transformed point is maxi-
mized, and hence the area of the smallest ellipse containing the circle and the transformed point is maximized.

We can use this observation to attempt to create a very bad approximate ellipse. Assuming that the exact
minimum ellipse is the unit circle, how can we construct a corresponding sequence of points that will make
the approximate ellipse as large as possible? One example of a bad point set is shown in Figure 6. The
algorithm finds the left and right points first, then finds the points going from the origin to the top of the
circle, and finally the points from the origin to the bottom of the circle. As we increase the number of points
on the y-axis, the ratio of the areas of the approximate and exact ellipses gets bigger. See Figure 7.

1 1

2

3
Eexact

Eapprox

Figure 6: An undesirable sequence of points

# Points Ratio
2× 102 3.082697164225789
2× 103 4.418103486895557
2× 104 5.14471378862369
2× 105 5.267371718841295
2× 106 5.280568308868795
2× 107 5.281897415706886
2× 108 5.2820305804653405
2× 109 5.28204328082953

Figure 7: Area ratios (approximate ellipse / exact ellipse)

Lemma 4. Assume there is some (possibly infinite) sequence of points < sn >=< s1, s2, ... > that maximizes
the area of Eapprox(< sn >), subject to the constraint that the exact minimum enclosing ellipse Eexact(S), of
the set S = {s1, s2, ...}, is the unit circle.

Let r1 and r2 be half of the axis lengths of Eapprox(< sn >). Then
area(Eapprox(<sn>))

area(Eexact(S)) = r1r2 is the approxi-

mation ratio (in terms of area) of the approximate ellipse algorithm.

Proof:

Assume that the above sequence of points < sn > exists.

9



Consider any bounded set S′ ⊂ ℜ2, and any sequence < s′n > corresponding to S′. If the exact minimum
ellipse Eexact(S

′) is just a segment, then the approximate ellipse algorithm is exact. Otherwise, Eexact(S
′)

can be transformed by some T to the unit circle. Apply the same transformation to S′ and < s′n >, and call
the results T (S′) and T (< s′n >).

Now T (Eapprox(< s′n >)) = Eapprox(T (< s′n >)) (and T (Eexact(S
′)) = Eexact(T (S′))), so

area(Eapprox(< s′n >))

area(Eexact(S′))
=

area(T (Eapprox(< s′n >)))

area(T (Eexact(S′)))

=
area(Eapprox(T (< s′n >)))

area(T (Eexact(S′)))

Obviously area(Eapprox(T (< s′n >))) ≤ area(Eapprox(< sn >)), so

area(Eapprox(< s′n >))

area(Eexact(S′))
≤ area(Eapprox(< sn >))

area(T (Eexact(S′)))

= r1r2

2

6.1 Experimental results

We ran the algorithm on randomly generated (using Sun Java’s Random class) point sets. There were ten
different sets, each one with 50 points. Each set was randomly permuted 1000 times. For each permutation
< s1, s2, ..., sn > of each set: For each pair of ellipses Eexact(s1, s1, ..., si) and Eapprox(< s1, s2, ..., si >), we
found the ratio of the respective areas, and stored it if it was the maximum for this permutation of this set.
The frequencies of maximum ratios are shown in Figure 8.

7 Higher dimensions

We can always translate, rotate, and scale a non-degenerate D-dimensional ellipse Ei into the D-dimensional
unit ball, and rotate so that the new point si+1 is on the positive x1-axis. Now the new ellipse E′

i+1 will have
to be symmetric with respect to the x1-axis. The plane containing the x1-axis and some other axis xj will
look the same, no matter what other axis we use. Therefore it must be that E′

i+1 has the representation

[p− p0]
T A [p− p0] = 1

[

x1 − x0 x2 ... xD

]













a 0 ... 0

0 c
. . .

...
...

. . .
. . . 0

0 ... 0 c























x1 − x0

x2

...
xD











= 1,

where x0, a, and c are the same as those in equations (5), (6), and (7). The approximate ellipse will be exact
at least up to and including the (D + 1)th point.

Let the current ellipse be [p− p0i]
T

Ai [p− p0i] = 1. Assuming we have the right half Hi = SiRi of the
current matrix Ai = HT

i Hi,

1. s′′i+1 ← Hi [si+1 − p0i]

2. Ri+1 ← the matrix that will rotate s′′i+1 onto the positive x1-axis

3. d← distance(origin, s′′i+1); x0, a, c are as in equations (5), (6), (7)
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Figure 8: Maximum ratio frequencies for 1000 permutations of ten point sets
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4. Si+1 ←













√
a 0 ... 0

0
√

c
. . .

...
...

. . .
. . . 0

0 ... 0
√

c













; po
′
i+1 ← (x0, 0, ..., 0)

5. Solve for p0i+1 in Ri+1Hi[p0i+1 − p0i] = p0
′
i+1

6. Hi+1 ← Si+1Ri+1Hi

Then Ei+1 has equation [p− p0i+1]
T HT

i+1Hi+1[p− p0i+1] = 1. If steps 2 and 5 can be done in O(D2) space
and O(Dω) time (where O(Dω) is the cost of multiplying D ×D matrices), then only this much space and
time are required for each new point.

8 Conclusions

The main open question is to obtain an approximation ratio that does not involve the eccentricity of the
minimum spanning ellipse.

We have implemented this algorithm. This impementation can be viewed at http://cs.uwindsor.ca/~asishm
by clicking on the link software.

References

[1] Bagchi, Chaudhary, Eppstein, and Goodrich. Deterministic sampling and range counting in geometric data
streams. In ACM Transactions on Algorithms (TALG), volume 3. 2007.

[2] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering
Applications, volume 2 of MPS/SIAM Series on Optimization. SIAM, Philadelphia, 2001.

[3] Martin E. Dyer. A class of convex programs with applications to computational geometry. In Symposium on
Computational Geometry, pages 9–15, 1992.

[4] Hershberger and Suri. Adaptive sampling for geometric problems over data streams. In PODS: 23th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 2004.

[5] Isenburg, Liu, Shewchuk, and Snoeyink. Illustrating the streaming construction of 2D delaunay triangulations
(short). In COMPGEOM: Annual ACM Symposium on Computational Geometry, 2006.

[6] Mark J. Post. A minimum spanning ellipse algorithm. In FOCS, pages 115–122. IEEE, 1981.

[7] B. W. Silverman and D. M. Titterington. Minimum covering ellipses. SIAM Journal on Scientific and Statistical
Computing, 1(4):401–409, December 1980.

[8] Eric W. Weisstein. Ellipse. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Ellipse.html.

[9] E. Welzl. Smallest enclosing disks (balls and ellipsoids). Lecture Notes in Computer Science, 555:359–370, 1991.

[10] Hamid Zarrabi-Zadeh and Timothy Chan. A simple streaming algorithm for minimum enclosing balls. In
Proceedings of the 18th Canadian Conference on Computational Geometry (CCCG’06), pages 139–142, 2006.

12


