
Voronoi Diagram and Delaunay Triangulation

1 Introduction

The Voronoi Diagram (VD, for short) is a ubiquitious structure that appears in a variety of disci-
plines - biology, geography, ecology, crystallography, to mention just a few.

The VD and its dual, the Delaunay Triangulation (DT, fot short), are two of the most important
and fundamental data structures in Computational Geometry that have been succesfully applied
to a variety of proximity problems. We will study a few of these later. It is not surprising therefore
that these have received a lot of attention from researchers, leading to a very extensive literarure
on their properties and applications.

In this chapter we will first describe what is a VD and discuss some of its basic properties. Next
we will discuss algorithms for computing the VD and explore some of its applications in solving
other Computational Geometry problems.

We will then introduce the DT, discuss some of its fundamental properties and show how to compute
a DT directly from a given set of points.

2 Voronoi diagrams

Three ingredients are needed to define a VD: a set of objects, an ambient space in which these
objects are embedded and a notion of distance between a point of the ambient space and a subset
of the given set of objects. The distance function enables us to define bisectors of pairs of sets of
objects that partition the ambient space into a VD of the given set of objects. Here’s a concrete
and simple example.

Let the set of objects be a set S of n sites (points) {s1, s2, . . . , sn}, the ambient space the two
dimensional plane and the distance be the Euclidean distance between any point of the plane and
a site in S.

The bisectors between pairs of sites are straight lines that partition the plane into n convex re-
gions, one corresponding to each site si. The region of site si is called the Voronoi polygon of si

and consists of the points which are closer to site si than to the remaining sites in S. The resulting
partition of the plane is called a (nearest point) VD of S.

Figure 1 below shows a Voronoi diagram on 4 sites.

The vertices and edges that make up the boundaries of the convex regions are called Voronoi edges
and Voronoi vertices respectively.

As is obvious, by varying the three ingredients we mentioned above we get a wide variety of Voronoi
diagrams (see [2] for the amazing variety of possibilities). While in this chapter we will be mainly

1



s1

s4

s2

s3

Figure 1: Voronoi diagram of 4 points

concerned with Voronoi diagrams of a set of point sites, we will mention a few of the more well-
studied ones at the end of the chapter.

3 Properties of a nearest point Voronoi Diagram

We establish a few useful properties of this diagram, assuming that no four points are co-circular
(that is, lie on the same circle).

Claim 1 The number of Voronoi vertices and edges are respectively 2(n− 1)− h and 3(n− 1)− h
respectively, where n is the number of sites and h the number of sites on the convex hull of S.

A finite graph satsfies Euler’s formula V − E + F = 2 for a convex polyhedron, where V , E and
F are respectively the number of vertices, edges and faces of the polyhedron (graph). This can be
established by a stereographic projection of the polyhedron, embedded on the surface of a sphere,
into a finite graph.

The Voronoi diagram of a set of n sites can be transformed into a finite graph by enclosing the
Voronoi diagram inside a very large circle and treating each of the h (= # of convex hull vertices
of the given point set) arcs that lie inside an unbounded Voronoi polygon to correspond to an edge
of the graph.

For this finite graph, we use the fact that 2E = 3V (each side of the equality counts the total
degree of the graph) to deduce, using Euler’s formula, that V = 2(F − 2) and E = 3(F − 2).

Now V = h + # V oronoi vertices and E = h + # V oronoi edges. Hence the number of Voronoi
vertices = 2(F − 2) − h and the number of Voronoi edges = 3(F − 2) − h. Since F = n + 1, these
counts are therefore 2(n − 1) − h and 3(n − 1) − h respectively 2.

Claim 2 Every Voronoi vertex is of degree 3.

2



Proof: Otherwise, 4 or more points would be co-circular, contrary to our assumption.

The next property is significant.

Claim 3 The circle C(v), centered at a Voronoi vertex v, and passing through the sites that define
v has no other sites in its interior.

Proof: By the definition of v it is closest to the sites that define it; a site in the interior of C(v)
by being closer to v would contradict this definition. (see Fig 2).

v

s2

s1

s3

Figure 2: No sites in the interior of C(v)

Another interesting question is this: which bisectors define the edges of the Voronoi polygon of a
site si ?

Claim 4 The bisector of the sites si and sj defines an edge of the Voronoi polygon of si (and thus
symmetrically that of the Voronoi polygon of sj) iff there exists a point of the plane whose nearest
sites are both si and sj simultaneously.

Proof: (only if) Let the site sj contribute an edge to the Voronoi polygon of si. Let p be an
internal point on this edge. If si and sj are not the nearest sites of p, let sk be a site that is closer.
From Fig. 3 it is clear that this redefines the edge that sj contributes to the Voronoi polygon of si

to exclude p. This contradicts the assumption that p is an internal point of the edge of the Voronoi
polygon of si due to sj. Thus p cannot have a site closer to it than si and sj.

(if) Let there exist a point p whose nearest sites are both si and sj. Thus p must lie on the bisector
of si and sj. If we move p slightly along psj towards sj, then sj becomes the closest site of p,
putting it in the Voronoi polygon of sj; in the same way, by moving it along psi towards si, we put
it in the Voronoi polygon of si. Thus p must belong to the part of the bisector of si and sj that is
a common edge of their Voronoi polygons. 2

The next claim shows a nice connection beween the VD of a set of points and its convex hull.

3



sk

sisj

p

Figure 3: When p is closer to sk than si or sj ....

Claim 5 The Voronoi polygon of si is unbounded iff si is a point on the boundary of the convex
hull of S.

Proof: (only if) Let si be a site interior to the convex hull of S. This implies that si lies inside the
triangle formed by some triplet of sites on the hull boundary. The bounded region formed by the
bisectors of si and each of these three sites contains the Voronoi polygon of si. Hence the Voronoi
polygon of si is bounded.

(if) Let si be a site on the hull boundary of S. Let sj and sk be sites adjacent to it on the hull
boundary. Consider a supporting line l of the convex hull through si. Let p be a point on a ray
through si that is orthogonal to l and C(p) be a circle centered at p with radius |psi| (see Fig. 4).
The point p is in the Voronoi polygon of si, since by construction any other site is farther from it
than the radius of C(p).

Since p is an arbitrary point on the line orthogonal to l, the Voronoi polygon of si is unbounded.
2

The dual of the Voronoi diagram is obtained by joining pairs of sites whose Voronoi polygons are
adjacent. We next show that:

Claim 6 The dual of the Voronoi diagram of S is a triangulation 1 of S.

Proof: We first show that no two segments in the dual diagram intersect except at their end points.

Assume that the segments joining the sites si and sj intersect the segment joining the sites su and
sv at the point p.

If p is the mid-point of both segments then p would have to belong to the Voronoi polygons of the
sites si, sj, su and sv. This is impossible as a point can belong to at most three different Voronoi

1Given n points in the plane, join them by nonintersecting straight line segments so that every region internal to

the convex hull is a triangle.

4



si

sj

sk

r

p C(p)

Figure 4: A convex hull vertex of S has an unbounded Voronoi polygon

polygons.

Thus p lies on one side of the mid-point of at least one of the two segments, say sisj.

If p is the mid-point of the other segement, then p is on the boundary of the Voronoi polygons of
su and sv, and in the interior of the Voronoi diagram of si as well. This is not possible.

Otherwise p is closer to, say su, than sv. Hence p is in the interior of the Voronoi polygons of si as
well as sv (see Fig. 5). This is also impossible.

Thus in all cases we conclude that the segments sisj and susv cannot cross.

su

sv

si

sj sj

si

su

sv

su

si

sv

sj

p

p

(a) (b) (c)

p

Figure 5: Non-intersection of two segments in the dual diagram

Next, we show that the set of segments in the dual diagram is maximal.

5



Suppose otherwise. This implies we can add a segment joining two sites si and sj whose Voronoi
diagrams are non-adjacent, while still satisfying the non-intersection property.

Thus the set of edges joining pairs of sites due to the dualization form a maximal set. 2

This triangulation is the famous Delaunay triangulation on S.

4 Constructing a Voronoi diagram

Many algorithms are available for constructing a (nearest point) Voronoi diagram. An algorithm
based on the divide-and-conquer paradigm is described in the textbook by Preparata and Shamos
[1]. This algorithm is messy and hard to understand.

Here we will describe a simple and beautiful algorithm by Fortune [] that is based on the sweepline
paradigm. The surprising aspect of this algorithm is the applicability of the sweepline technique to
this problem - something that appears impossible at first sight.

Here, we will indulge in a brief digression to explain the sweepline technique so that the cleverness
of Fortune’s algorithm is better appreciated.

The sweepline technique as the very name suggests is a method by which we sweep a line through
a set of geometric objects from left to right (or right to left, if you wish) in order to compute some
function on these objects. For example, given a set of line segments in the plane (again!) we might
be interested in determining all pairs of segments that intersect or, maybe, just obtain a count of
the number of interesecting pairs.

This can be accomplished with two simple data structures - a sweepline structure that keeps track
of all the line segments that intersect the current position of the sweepline and an event queue that
keeps track of the discrete set of events where the sweepline structure changes (for more details see
Preparata and Shamos [1]).

The significant fact for us to notice is that an individual segment appears in the sweepline structure
at the event corresponding to its left end-point and disappears from the sweepline at the event cor-
responding to its right end-point. All the intersections due to this segment are discovered beween
these two events, so that once this segment leaves the sweepline status no new intersections due to
this segment remain to be discovered.

If we try to apply this technique in a straightforward way to computing the Voronoi digram of a
set of points we immediately encounter the problem that the Voronoi polygon of a point (this is an
event) extends on both sides of this event. In other words, the computation of the Voronoi polygon
of a point is not complete when the sweepline goes past the point.

Fortune proposed a novel way of getting around this difficulty. In addition to the usual sweepline
infrastructure, the effect of a point-event is maintained in the form of a parabola that is generated
when the sweepline reaches a point. This parabola has the point as its focus and the sweepline as

6



its directrix so that it trails the sweepline. and remains active till the Voronoi polygon of the point
that caused its generation has been constructed.

All active parabolas are maintained as a beach-front made up of parabolic arcs (in mathematical
terms, this is is an upper envelope of all the active parabolas) that changes dynamically as new
parabolas are added and inactive parabolas are removed.

An intriguing question that crops up is how does a parabola best represent the interest of an event
point. To answer this question we note that the Voronoi edges are generated by the intersection of
a pair of parabolas that are adjacent on the beach line. A Voronoi vertex is generated when three
parabolas on the beach-front meet at a point. This point is equidistant from the points that are the
foci of these three parabolas as well as from the sweepline which is the directrix of all three. The
circle centered at this common intersection point, with radius equal to distance from the directrix
is tangent to the directrix, passing through the foci af all the three parabolas, and is thus called a
tangent-event. At this time, a Voronoi vertex is generated and the “middle” of the three parabolas
disappears from the beach-front.

5 Delaunay Triangulation

As explained earlier, the dual of the Voronoi diagram of S is a (the ?) Delaunay Triangulation (DT,
for short from now on) on S, and as such it is a byproduct of the Voronoi diagram construction
algorithm.

However, it is possible to construct a DT directly from the given set of points S. Below, we discuss
such an algorithm based on the incremental construction paradigm.

A Delaunay triangulation on S is (uniquely?) characterized by the property that the circumcircle
of each triangle contains no other sites in its interior. This folllows from the empty circle property
of a Voronoi diagram described in the previous section.

In the algorithm below, we will need the following characterization of an edge in the DT.

Claim 7 An edge connecting two sites si and sj is an edge in the DT iff there exists a circle passing
through si and sj that does not contain any site in its interior.

5.1 Incremental Algorithm

Assume that we have constructed the DT of the first i − 1 sites (i > 3), DTi−1. To update this
triangulation upon addition of the point pi, we first locate the triangle 4rst of DTi−1 in which pi

lies. Then the edges pir, pis and pis are new Delaunay triangulation edges (Claim 7).

We show, for example, that pir is a Delaunay edge. Let rr′ be a diameter of the circle circumscrib-
ing triangle 4rst (see Fig. 6). Choose r′′ on this diameter so that pir

′′ and pir are orthogonal.
The circle on rr′′ as diameter goes through the edge pir, and has no site in its interior because it
is entirely inside the circumcircle of 4rst.

7



t

pi

r

r”

r′

s

Figure 6: New Delaunay edges incident on pi

A triangle 4T in the current triangulation is said to be in conflict with pi if the circumcircle of
triangle 4T contains pi and thus cannot be part of DTi. Thus the status of the edges rs, st and
tr need to be checked. Consider the edge rs, and the triangle 4prs, not containing pi. If triangle
4prs is in conflict with pi then the edge rs is not a Delaunay edge and we replace it by the new
edge ppi. This is called edge-flipping. Every time we do an edge-flipping two new edges are up
for the circumcircle test. We continue till no edge-flipping occurs, when we have the Delaunay
triangulation of the i sites.

5.1.1 Analysis of the Incremental Algorithm

The following gross analysis tells us that the algorithm is in O(n2). The number of edge-flippings
caused by the insertion of pi is proportional to the degree of this vertex in the triangulation. The
degree of each vertex is in O(i) and hence the total number of edge-flippings after the insertion of
the n-th point is in O(n2). The cost of a brute-force location of the point pi in DTi−1 is also in
O(i) and hence the cost over the entire sequence of n insertions is in O(n2).

A more subtle (and messy!) analysis shows that the expected complexity of this algorithm is in
O(n log n).

The first observation is that the average degree of a site in the DT is at most 6, since there are
at most 3n − 6 edges. Thus if we make a random sequence of insertions the expected number of
edge-flippings is in O(n).

5.2 The Delaunay Tree Data Structure

The Delaunay Tree data structure provides a more efficient alternative to the brute-force search
for finding a triangle in DTi−1 that contains pi. It is a layered DAG (short for Directed Acyclic

8



Graph) in which we maintain all triangles created during the incremental construction. The i-th
layer consists of traingles created during insertion of site pi.

The root (0-th layer) of this Delaunay tree is a large triangle that contains all the sites of S. From
each each node (storing a triangle) at a given layer, we maintain pointers to all nodes in the next
layer that store triangles that overlap with this triangle. Referring to the discussion above, we thus
keep pointers from the nodes that stores the old triangles 4rst and 4prs to the triangle 4ppis if
it is in DTi.

To locate pi in the DAG corresponding to DTi−1, we start at the root of the DAG and follow the
pointers to descend along a path in which the triangles are in conflict with pi till we hit a leaf node
which stores the triangle that contains pi.

We first prove the following claims.

Claim 8 If the triangle of DTi−1 containing pi is known, the structural work needed for computing
DTi from DTi−1 is proportional to the degree of pi in DTi.

Claim 9 For each h < i, let dh denote the expected number of triangles in DTh \ DTh−1 that are
in conflict with pi, then

∑i
h=1 dh = O(log i)

Proof: Let C denote the set of triangles in DTh that are in conflict with pi. A triangle T ∈ C
belongs to DTh\ DTh−1 iff it has ph as a vertex. Since the number of triangles in DTh is 2 ∗ h− 5
and the expected degree of ph is 6 the probability that a triangle in conflict with pi survives is
6/(2 ∗h− 5) = 3/h, under the assumption that ph is randomly chosen. Thus, the expected number
of triangles in C\ DTh−1 is 3 ∗ |(C)|/h. Since the expected size of C is less than 6(because the
average degree of pi is at most 6), therefore dh < 18/h. Thus ,

∑i
h=1 dh = O(log i). 2

It follows from the last lemma that the expected complexity of the incremental construction algo-
rithm is in O(n log n).

References

[1] F.Preparata and M.I. Shamos. Computational Geometry: An Introduction, Springer Verlag
1985.

[2] A. Okabe, B. Boots and K. Sugihara. Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, John Wiley, 2nd edition, 2000.

[3] F. Aurenhammer. Voronoi Diagrams: A survey of a fundamental geometric data structure,
ACM Computing Surveys, 23(3):345-405, Sept. 1991.

9


